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ABSTRACT 

In this research, a-(Si,Ge):H and a-(Ge):H devices are grown by the electron 

cyclotron resonance plasma-enhanced CVD technique and the electrical and optical 

properties of these dcvices under different plasma conditions are investigated. 

The ion bombardment during the growth can be enhanced by low pressure, inert gas 

and substrate bias. The conclusion that low pressure leads to better quality of the material 

under hydrogen plasma because of higher ion bombardment is further verified by the space 

charge limited current (SCLC) method. The midgap defect density of states for the low 

pressure sample is lower than the one deposited under high pressure. The film properties for 

He-ECR films did not degrade as the pressure changed from 10 mTorr to about 25 mTorr, 

but at higher pressure (35mTorr). It's because the ion energy of the He plasma is higher than 

that of the Ht plasma. 

We also found that negative substrate bias can provide higher ion bombardment. The 

effects of substrate bias on the growth rate are different for the high Ge content sample and 

the low Ge content sample. Under certain deposition environment, the performance of the 

devices can be improved when a negative substrate voltage is applied. But under other con

ditions when the ion bombardment is already high, the effect is not so obvious. 

Most researchers concentrate on the alloy with Ge content <50%. In this research, we 

explored the properties of a-(Si,Ge):H alloy with Ge content >50% including a-(Ge):H and 

found that good quality material can be obtained under appropriate plasma conditions. Fou
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rier transformed infrared absorptance spectroscopy (FTIR) measurements showed that the 

preference of Si-H to Ge-H is broken up, low pressure and high hydrogen dilution are benefi

cial to reduce Ge-Ge clustering and increase the Ge-H bond so that the material is grown 

more homogeneously. The quality of the a-(Ge):H material can be further improved by pro

viding some graded boron doping in i layer and higher ion bombardment. A fill factor of 

55% and Urbach energy of 40 meV are obtained for a-(Ge):H solar cell. This is the first time 

ever that a good quality a-(Ge):H solar cell has been made. 
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CHAPTER 1. INTRODUCTION 

In the past 30 years, hydrogenated amorphous silicon (a-Si:H) and its alloys 

have attracted more and more interest due to their potential application in solar cells, 

photo sensors and thin film transistors [1-4]. Among amorphous silicon alloys, 

hydrogenated amorphous silicon germanium(a-(Si,Ge):H) has been extensively studied 

[5-11] because the bandgap can be easily tuned to be match to the solar spectrum. It can 

also be used as lower layer in multi-junction solar cells, which have higher energy 

conversion efficiency than single junction device. J.Yang and A.Baneijee have reported 

a triple junction a-Si:H and a-(Si,Ge):H solar cell with 14.6% initial and 13.0% stable 

(after 1000 hours light illumination) conversion efficiencies [12]. Although a lot of 

work has been done on the properties of a-(Si,Ge):H alloy, many aspects remained 

unexplored. 

In Chapter I, some basic physics of the a-(Si,Ge):H alloys will be introduced. In 

Chapter 2, the plasma enhanced CVD system we used to grow the materials will be 

described and the sample preparation and growth chemistry will be mentioned. In 

Chapter 3, a set of systematic diagnostic measurement techniques will be explained. In 

Chapter 4, the effect of the ion bombardment on the a-(Si,Ge):H devices and the 

properties of low bandgap a-(Si,Ge):H and a-(Ge):H device will be discussed. In 

Chapter 5, some important conclusions will be drawn. 



www.manaraa.com

1.1 Physics of a-(Si,Ge):H alloy 

1.1.1 Structural properties of a-(Si,Ge):H alloys 

Unlike crystalline, amorphous semiconductors do not have long range order. 

Many concepts such as lattice, point defect and Bloch wave are not applicable. The 

structural model of a-(Si,Ge):H can be described as a continuous random network as 

shown in Figure 1.1. 

Germanium 

Silicon 

Hydrogen 

Dangling bond 

Figure l.l Illustration of continuous random network 

In this tetrahedral network, silicon atoms bond covalently to four neighboring 

silicon or germanium atoms with small deviations from the bond lengths and angles of 

in crystalline material. The accumulation of the small deviation eventually destroys the 

symmetry of the structure. Some Si or Ge atoms only have a coordination number of 

three, leaving one unpaired electron, which is known as a dangling bond. Before 

passivation by hydrogen, the number of dangling bonds is about 10~''-I0~cm'^. After 

passivation, the number drops down to about 7*10'"* cm'^ for the best a-Si:H films[l]. 

Both dangling bonds and deviations from the bond lengths and angles will contribute to 

the formation of a continuous distribution of the density of states. 
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1.1.2 Density of states of a-(Si,Ge):H alloy 

The lack of long-range order in a-(Si,Ge):H inevitably causes distortions to the 

tetrahedral network. It's widely believed that the bond angle and length disorder is 

responsible for the band tail states in the optical bandgap, while dangling bonds and 

small impurities are believed to cause deep midgap defect states within the optical 

bandgap. Figure 1.2 shows a typical electronic density of states of a-(Si,Ge);H obtained 

by Sutzman [5] by electron-spin resonance (ESR) in 1989. 

The density of states decreases exponentially from the conduction band edge or 

valence band edge. The inverse of slope of the conduction band tail is about 25 meV, 

while the inverse of the slope of the valence band tail is about 45-55 meV. 

Q~S«o.7Geo3 H 

0-[G#) 

VB(Si -Gel 

VBlSi-Si) 

Ev 

v8lGe-0e) 

D-(Si) 

0*j0c» 

O'(Si) 

Figure 1.2 DOS in a-(Sio.7Geo.3):H (Stutzman, J.Appl.Phys., 1989) 
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The inverse of the slope of valence band tail is also known as the Urbach 

energy(Eur), which indicates the quality of the material. A low Urbach energy implies 

less disorder. 

The degradation in properties of a-(Si,Ge):H alloys with decreasing Eg is due to 

the increasing microstructure defects by the incorporation of Ge into the material. 

Mahan and Raboisson [7] suggested that there is a recombination channel other than 

through midgap states and they correlated this excess recombination with the presence 

of microstructure. So the microstructure defects are very important for the properties of 

the material [13-18], 

According to Werner Luft and Y.Tsuo's definition[l], the structure on a scale of 

10 nm down to the atomic level is generally referred to as the microstructure of the 

amorphous film. This concept of microstructure includes aspects such as the tetrahedral 

network, hydrogen bonding configurations, multivacancies(up to three missing atoms), 

internal surfaces associated with microvoids, density fluctuations, bonded hydrogen 

distribution (clustered or dispersed), and unbonded hydrogen distribution (isolated and 

bulk molecular hydrogen). Features such as columnar structure, void volume fraction, 

void size distribution, void shape, and heterostructure ("islands" with low hydrogen 

concentration and "tissues" with high hydrogen concentration), although of micrometer 

scale, are also often included in the concept of microstructure. Among these aspects of 

microstructure defects, the following are closely associated with quality of the a-

(Si,Ge):H alloy: (1) columnar structure, (2) heterostructure, (3) clustered hydrogen, (4) 

polyhydride bonding. Some of these attributes are interrelated. 
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1.1.3 Electrical and optical properties of a-(Si,Ge):H alloy 

Although a-(Si,Ge):H is currently the best low bandgap material, it has much 

poorer electrical and optical properties than a-Si:H. By varying the Ge content in the 

material, the optical bandgap (Eg) of a-(Si,Ge):H alloy can be modulated from 1.8 eV to 

I.O eV. Many researchers have found that there is a linear relationship between the Ge 

content and optical bandgap and the quality of the material degrades with decreasing Eg 

[5-10]. The photoconductivity decreases and dark-conductivity increases when Eg 

decreases, which causes the decrease of photosensitivity as shown in Figure 1.3. 

Besides, with the decrease of Eg, electron and hole mobility decreases; 

electron mobility and hole mobility lifetime product(nT) decreases; the Urbach energy 

increases and the midgap defect density of states increases. 
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Figure 1.3 Photosensitivity ajrso vs. bandgap[l] 
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Table l.l shows some properties of typical a-Si:H and a-(Si,Ge):H. The 

resulting poor photoelectric properties are generally attributed to several factors, such as 

preferential attachment of H to silicon rather than to germanium; increase of SiH^ in the 

network; the large heterostructure present; increase of Ge dangling bonds; more Si-Si 

and Ge-Ge clustering; columnar structure; greater density of voids. These defects 

reduce transport properties. 

Electrical and optical properties of a-(Si,Ge):H alloys are quite dependent on the 

growth methods such as RF glow discharge, photo-CVD (Chemical vapor deposition), 

ECR(Electron cyclotron resonance) Plasma-enhanced CVD, etc. Even when growth 

techniques are the same, the variation of the quality is large because of the different 

feed gases, different deposition conditions, different dilution etc. 

Table 1.1: Some properties of typical a-Si:H and a-(Si,Ge):H 

a-Si:H. a-(Si,Ge):H 

Bandgap 1.7 eV to 1.8 eV l.OeV to 1.7 eV 

Urbach energy 42 meV to 50 meV >45 meV 

Photoconductivity 10"* S/cm to 10'^ S/cm 10'^ S/cm-10"' S/cm 

Dark-conducti vity 10"'"S/cm to 10'"S/cm 10"''S/cm-10 " S/cm 

Photosensitivity 10^ to 10" 10" to lO'' 

M.T(hole) >10 ® cm'A^ 10""* cm-/V to 10"'" cmW 
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1. 1.4 The application of a-(Si,Ge) alloys as solar cells 

The main use of a-(Si,Ge) alloys is in solar cells although there are other 

applications such as image scanner and light emitting diodes. The structure of a solar 

cell is a sandwich of three layers which are phosphorus doped layer/intrinsic 

layer/boron doped layer. Figure 1.4 shows the band diagram of the device. 

n 

Ec 
Ef 

Ev 

Figure 1.4 Band diagram of the a-(Si,Ge):H devices 

The light is incident on the p layer and penetrates the p layer to the i layer, 

electrons are excited from the valence band to the conduction band by absorbing the 

photon energy. Because the p layer is very thin compared to the i layer, the electron-

hole pairs are mainly generated in the i layer. Electrons are collected on the p side and 

holes are collected on the n side separately by the electric field. 

The performance of a solar cell is judged by its power conversion efficiency, 

which is defined as the ratio of maximum power that is extracted from the cell to the 

total illumination power: 

Light -> 

•> 
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ri = 
<P: 0 " m 

V / 
, where FF = 

Here Vqc is the open circuit voltage, Isc is the short circuit current. Vma, is the voltage at 

the point the output power reaches maximum value, Vmax is the current at that point. Vqc 

is mainly determined by the optical bandgap Eg, and by the quality of the material of the 

i-layer. Isc and FF are determined by the internal electrical field and hole mobility 

lifetime product. These parameters will be explained in detail in Chapter 3. 

The absorption of the incident light is a very critical process in a solar cell. 

Figure 1.5 shows the excitation of electrons from the extended states of the valence 

band to the conduction band, from the valence band tail to the conduction band and 

from the mid gap states to the conduction band. 

Conduction band 

Light > 

6 
Valence band 

Figure 1.5 Illustration of the absorption of light 
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From this figure, we can find that the tail states limit the absorption of the high-

energy photons and limit the open circuit voltage. The midgap states act as very 

effective recombination centers for excess carriers and limit the diffusion length of 

minority carriers and affect both fill factor and open circuit voltage. A high density of 

midgap defect states also reduces the electrical field in the middle of the device. 

In a single junction cell, a high Vqc can be obtained by using high bandgap 

material. However, high Isc can be obtained by using low bandgap material because of 

more absorption at longer wavelength. We can get high Vqc and high Isc at the same 

time. Stacked cells can solve this problem and get high efficiency. The structure of the 

stacked cell is shown in Figure 1.6. 

a n  Light 

Substrate 

p layer 

i layer(a-(Si) 

n layer 
p layer 

i layer(a-(Si,Ge)) 

n layer 

Figurel.6. the structure of the stacked solar cell 

1.2 Purpose of the research 

In order to improve the properties of a-(Si,Ge):H alloys, various attempts have 

been made to control the growth chemistry, such as use of strong dilution of H2 and the 

use of fluorinated silicon and germanium reactants. It's also been suggested that good 



www.manaraa.com

10 

quality a-(Si,Ge):H alloys could be deposited under conditions that maximize the ion 

bombardment process. Some previous work [19-27] shows that ion bombardment seems 

to play a role in improving the material quality. 

The research group at United Solar System Corporation (USSC) showed that the 

electronic and optical properties of a-(Si,Ge):H films and devices deposited at high 

growth rate could be improved by positive ion bombardment. The ion bombardment is 

controlled by applying an electric bias on the substrate. In 1995, X. Xu and S.Guha[22] 

showed that the power conversion efficiency increased from 7.1% to 8.17% when ion 

bombardment was used at a high deposition rate (lOOA/s). In 1996, S. Sugiyama and 

J.Yang [26] found that at a deposition rate between lOA/s and 40A/s, the fill factor of 

a-(Si,Ge):H solar cells has a big increase from 28% to 64% due to the high positive ion 

bombardment. By small angle X-ray scattering (SAXS) and infrared (IR) absorption, 

they found that a-(Si,Ge):H films with low ion bombardment are more porous and have 

higher compositions of Si-H2 and Ge-H2 bonding and lower total hydrogen content and 

that appropriate ion bombardment makes a denser structure in a-(Si,Ge):H films 

deposited at high growth rates. In the same year, X. Xu and J.Yang[21] reported that 

positive ion bombardment is not beneficial to either a-Si:H or a-(Si,Ge):H solar cells 

made by rf diode or triode PECVD at low growth rates. They pointed out that ion 

bombardment has two trade-off effects: (1) increased adatoms mobility gives rise to a 

denser structure and superior material quality, and (2) ion bombardment induced defects 

cause deterioration in carrier transport properties. The performance of the a-(Si,Ge):H 
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solar cell can be optimized by adjusting these two effects and in low deposition rate 

material, the second factor dominates, while the growth rare is high, performance is 

limited by poor adatom mobility and ion bombardment is desirable. 

Paul Wickboldt and Dawen Pang[23] at Harvard university showed that 

electronic and optical properties of films are improved by ion bombardment. They 

found that the elimination of heterogeneous, columnar-like structure is attributed to 

increased ion bombardment during growth and conditions which also yield a high 

electron temperature in the discharge plasma, resulting in favorable discharge 

chemistry. They grew the sample by rf diode PECVD at sA/s and their research was 

limited to films. 

The work from both groups is incomplete and sometimes contradictary. We 

have questions like; Under what conditions does ion bombardment have a strong effect 

on material and device properties? Can we further improve the material at low growth 

rates? And do the changes in plasma conditions imply more ion bombardment, or is 

something else going on? 

The second goal of this research is to get good quality materials with lower 

bandgaps. It's generally believed that when the Ge content is larger than 50% in the 

alloy, the quality of the material is much worse. Most of the researchers concentrate on 

the a-(Si,Ge):H alloy with Ge content less than 50%. We investigated if we could use a 

combination of hydrogen dilution, growth chemistry and ion bombardment to produce a 

good low bandgap a-(Si,Ge):H and a-(Ge):H device. 
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CHAPTER 2. SAMPLE PREPARATION AND GROWTH 

CHEMISTRY 

2.1 ECR PECVD system 

The samples are prepared by electron cyclotron resonance (ECR) microwave 

remote plasma enhanced CVD technique. Compared with the conventional glow 

discharge technique, ECR plasma CVD has some advantages [1]: 

(1) Efficient energy transfer from microwave field to the plasma 

(2) Control of the ion energy typically( 10-50 eV) by the gas pressure to avoid high-

energy particle bombardment of the growing film, thereby producing less stress in 

the film and less damage to the growing surface. 

(3) High utilization of the feedstock gases 

(4) Better control of the dissociation of the deposition gas 

(5) Lower operating pressure, which may lead to cleaner processing 

(6) Lower substrate temperature 

(7) Reduced powered electrode effects, such as contamination, self-biasing, and hot 

electron generation 

(8) High ionization ratio (10"^) 

(9) High plasma density (>10"/cm^) 

These advantages make ECR-PECVD a good technique especially in alloy growth. 
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The schematic diagram of the reactor is shown in Figure 2.1. It consists of a 

microwave source operating at 2.45 GHz, which feeds power through a 3-stub tuner 

into the cavity. The plasma gases are introduced into the microwave cavity near the 

source end and the reaction gases are introduced into the chamber near the substrate 

through a separate manifold. The circular motion of the electrons is caused by the 

magnetic field provided by the two coils. The plasma is excited by these high-energy 

electrons. When the frequency of the cyclotron electrons is equal to that of the 

microwave source, most of the energy is absorbed by the plasma. The plasma enters the 

reaction chamber through the restricting orifice and then decomposes the reaction gases. 

Then the film is grown when these reactive radicals reaches the substrate. The substrate 

temperature can be controlled by an electrical heater. 

Roughing 
Pump 

SubsLTuie 
Holder 

Tuner 

Nlicrowavc 
Gcncminr f=s2JWGHz 

Three Stub 
Tuner 

Waveguide 

Turbo 
Pump / V 

Top 
Manifold 

Dopant 
Manifold 

Intrinsic 
Manifold 

Root Blower 
Pump 

\lcchanical 
Pump 

Figure 2.1 The schematic of the ECR system[28] 
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2.2 Sample preparation 

In this experiment, 100% SiHj and 10% hydrogen diluted GeHj are used as 

reaction gases. Hi or He is used as plasma gas and PH3 or BiHe as doping gas. There are 

three types of substrate: coming 7059 glass, stainless steel and double side polished Si 

wafer. Coming 7059 glass is used to grow films for some optical measurements. 

Stainless steel is used to make devices. The double polished Si wafer is used to grow 

films for FTIR measurements. 

The geometry of the two different kinds of devices made in the ECR reactor is 

shown in Figure 2.2 and 2.3. The p-i-n device is an SS/n+/i2/ii/p structure and is used 

as a solar cell. The n-i-n device is an SS/n+/i/n structure and is used to measure the 

midgap defect density. 

A1 contact 
Cr contact 

uu Light 

p-layer 

11 layer 

12 layer 

n+ layer 

g- Stainless steel substrate 

Figure 2.2 Geometry of p-i-n devices 

For a p-i-n device: the thickness of the phosphorus doped n+ layer is about 0.45-

0.55nm and the thickness of the intrinsic ij layer is from 0.15-0.5|j,m. Ii is a very thin 

buffer layer which used to make a transition in bandgap between the p-layer and the i-

layer as well as limiting the diffusion of boron from the p-layer to the intrinsic layer. 
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The last layer, boron doped p layer, is about 0.05nm thick and the bandgap is higher 

because of the addition of carbon into the p-layer. The high bandgap p-layer reduccs 

optical losses in the p layer and also reduces back diffusion and recombination of 

carriers. A semi-transparent Cr and a narrow A1 bar are deposited by evaporation, which 

are about 0.01 jam and 0.1 jim thick respectively. 

Ag paint 
Cr contaci 

n layer 

i-layer 

n-layer 

^SS substrate 

Figure 2.3 Geometry of n-i-n devices 

For n-i-n devices: the differences are that there is no ii layer and the upper layer 

is n+ layer again, not p layer. The thickness of the intrinsic layer is about I(4.m. Cr of 

0. I|j,m thick is deposited by evaporation and a thin layer of silver paint are followed as 

contact. 

2.3 Growth chemistry 

The growth chemistry is very important for the quality of the material [35-41]. A 

good growth mechanism will result in a better material. The ion flux reaches the surface 

of the substrate and forms a thin layer of amorphous material. There are several 

reactions near the surface: 
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e- +SiH4^ SiHs +H^ 

e" +SiH3^ SiH2 +H^ 

e' +SiH2-> SiH +ir 

FT +SiH4^ SiH3 +H2 

e +GeH4—> GeHs +H^ 

e +GeH3—> GeHi +H^ 

e +GeH2^ GeH +H^ 

fT +GeH4^ GeHs +H2 (2.1) 

If all the three species (XH3, XH2, XH) (X=Si or Ge) are present equally, the surface 

will be rough and many microvoids and dangling bonds will be formed. It is preferred 

that only one species dominates. In the ECR PECVD system, XH3 and XH2 are the 

major radicals. If we use high hydrogen dilution, then reaction 1 and 4 are predominant 

and XH3 will be the major radical. Besides, hydrogen has other effects during the 

growth: passivate the dangling bonds, etch the surface hydrogen, break ihe weaker Si-Si 

and Ge-Ge bonds (etching during growth) etc [35-41]. 

With the addition of Ge into the alloy, the defect density increases compared to 

the density in a-(Si):H. This result is believed to arise from the following factors: (I) 

Growth from many radicals, the inhomogeneous growth leads to poor microstructure (2) 

Ge is heavier than Si, so the surface mobility of Ge is very low. The relative growth rate 

of Ge is higher, so there is a preference of Ge into the alloy (3) The Si-Si bond is 2.3eV, 
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Ge-Ge is 1.9eV, Si-H is 3.35eV, Ge-H is 2.99eV, so there is a preference of Si-H to Ge-

H, leaving more Ge dangling bonds. 

The question that arises is: How to improve the quality of a-(Si,Ge):H alloys? 

The discussion of growth chemistry shows that three parameters may be important in 

producing better films: (1) High hydrogen dilution: reduce the Si and Ge dangling 

bonds. (2) Optimize the deposition parameters such as pressure, power and temperature 

(3)Ion bombardment: provide mobility to radicals on the surface by collisional 

momentum transfer so as to improve the microstructure of the material. 
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CHAPTER 3. CHARACTERIZATION 

In this thesis, a set of systematic measurement methods is used to get the 

characteristics of both films and devices. Among them, the midgap defect density 

measurement is new and first used in our group, while other measurements will be 

described simply because they had been covered in previous theses [27][28][34]. 

3.1 Films 

3.1.1 Thickness 

The thickness of the films is measured by X-9 dual beam spectrophotometer. 

Figure 3.1 shows the transmittance of a a-(Si,Ge):H film that has a Tauc gap of 1.56eV. 

The thickness can be calculated by the following equations: 

Thickness = 2̂̂  ^ (3.1) 
— A,) 

where A (>1000nm) is the value of peak or valley, n is the refractive index, m=2 for 

peak to peak or valley to valley intervals and m=4 for peak to valley or valley to peak 

intervals. 
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Figure 3.1 Transmittance of a-(Si,Ge):H film 

3.1.2 Bandgap 

There is a relationship between absorption coefficient and optical bandgap of the 

film. It can be described by the following equation, which is for photon energies larger 

than the optical bandgap: 

- J a - h v  =  B i h v  - E ^ )  .  (3.2) 

The optical bandgap defined by this equation is called the Tauc gap. In Figure 3.2, the 

intersection of the dashed line with the x-axis shows the Tauc gap. The bandgap can 

also be determined by the photon energy at which the absorption coefficient is 10"* cm ', 

which is called Eo4 (as shown in Figure 3.3) The difference between Etauc and E04 is that 

the Tauc gap is thickness dependent, while E04 is independent of the thickness. 
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Figure 3.2 Tauc gap plot of a-(Si,Ge):H film 
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Figure 3.3 E04 plot of a-(Si,Ge):H film 
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3.1.3 Photo and dark conductivity 

The ratio of the photoconductivity to dark conductivity is called 

photosensitivity, which is an indication of the quality of the material, along with the 

photoconductivity. The photo and dark conductivity are determined in our lab by the 

applying a voltage on the two parallel metal contacts. The conductivity can be deduced 

by the following equation: 

W I 
, (3.3) 

" L Vd 

where W/L is the length to width ratio of the metal contact, d is the thickness of the 

film, V is the applied voltage and I is the current. 

3.1.4 Electron quantum efficiency, mobility and lifetime product 

The photoconductivity normalized against the actual amount of light absorption 

is equal to the product of quantum efficiency, mobility and lifetime of electrons (rmr). 

The simplest form of photoconductivity can be expressed as: 

(^Ph = ^ (3.4) 

where 

A n = G T  =  a i ] . -  R ) n r 4 > , „ , (3.5) 

a,, =aa-R)<(>,^qriMT. (3.6) 

So the electron rmx can be obtained by the measurement of photoconductivity. 
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3.1.5 Sub Bandgap absorption 

Unlike crystalline Si, there is still some absorption below the optical bandgap 

because of the existence of the band tail and the midgap defects (shown in Figure 1.3). 

The relation between absorption coefficient and incident photon energy when photon 

energy is below the bandgap is defined as: 

Itv - E 
a = a^ exp(——^). (3.7) 

Eur 

The inverse of the slope of the curve is the Urbach energy we mentioned before. 

Figure 3.4 shows the absorption coefficient vs. incident photon energy. The curve can 

be divided as three regions: The curve follows the first equation for a when E>Eg, and 

then the Eur equation when Emidgap<E<Eg and the absorption in the third region is 

because of the existence of the midgap defects. 
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Figure 3.4 Absorption coefficient vs. Incident photon energy 



www.manaraa.com

23 

3.1.6 Activation energy 

The activation energy Ea is an indication of how intrinsic the material is. It can 

be obtained by the measurement of dark conductivity at different temperature. The 

relationship between dark conductivity and activation energy is expressed by: 

<T = cr„ exp(-^). (3.8) 

3.2 Devices 

The performance of solar cell can be characterized by the following 

characteristics. 

3.2.1 J-V curve(Voc, Jsc, FF) 

The equivalent circuit of the device is shown in Figure 3.5. 

JL 

0 2 
Load 

Figure 3.5 Equivalent circuit of p-i-n devices 
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The circuit consists of a current source, a diode and series and shunt resistances. 

A typical J-V curve of the a-(Si,Ge):H solar cell is shown in Figure 3.6. The J-V curve 

can be expressed by the following equation, assuming the series resistance is zero and 

the shunt resistance is infinite: 

J =J 
( -tv \ 

e^kT 
V y 

-J l • (3.9) 

Jo" Reverse saturation current density Jl: Current density under illumination 

where 

dN. 
(3.10) 

J-V 

(V max* Imax) 
dsc. 0) 

(0. VocJ 

ai 02 03 04 
MN 

05 

Figure 3.6 J-V curve of a-(Si,Ge):H solar cell 
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. _ ^n.'vv'o 
0  /• ' * s ~  -A r(n + p ) 2T 

(3.11) 

where 

= yl^c^v exp(-:^). (3.12) 

So Jl is determined by the light reflection and quantum efficiency. Jo is determined by 

the bandgap and carrier lifetime. 

Voc is determined by the ratio of light current and reverse saturation current. 

kT 

1 

^ J ^ •' L kT 
Ln(j^)-Ln 

2T 
J J 

2^ 
(3.13) 

so Eg is the most significant factor to change Vqc- If Jl or carrier lifetime x changes by a 

factor of 10, Vqc will only changes by 60 mV. Wd is also a factor to change Vqc, but 

when the thickness of the i layer decreases, it also results in a decrease of JL, SO the 

effect of thickness is small and unpredictable. But a good p+/i interface and good 

quality material as the i layer still have positive effects on Vqc. 

Isc is determined by = -7^ • Area . 

FF is determined by FF = max max 

V.J. 
, which is affected not only by the quality of 

the material, but also by the series resistance and shunt resistance. The effect of the 

series resistance can be eliminated by making a good ohmic contact. The effect of the 

shunt resistance is determined by the cell itself. 
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3.2.2 Urbach energy 

Like subgap absorption, subgap QE(?i) is used to measure the Urbach energy. 

The curve is shown in Figure 3.7. 

3.2.3 Tauc gap 

The log plot of long wavelength quantum efficiency used to get the Urbach 

energy can also be used to estimate the Tauc gap for devices. Comparing the QE(X) at 

long wavelength with an unknown Eg to another QE(X) with a known Eg, the energy 

shift at the same value of QE is the difference of the two Eg if the thicknesses of the i-

layer are the same. It's shown in Figure 3.7. 
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Figure 3.7 Estimation of Tauc gap 
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3.2.4 Quantum efficiency and Biased Quantum efficiency 

Quantum efficiency is defined as the ratio of the number of charge carriers to the 

number of the photons incident on the sample at a certain wavelength. QE 

measurements provide information on how well the devices absorb photons of various 

wavelengths, and how well the photogenerated carriers are collected under normal 

forward bias conditions. The internal electric field is reduced with forward biasing, the 

biased QE provides details about how the reduction in E-field affects the collection of 

photogenerated carriers. Any problems in the device design that may inhibit carrier 

collection such as hole trapping at the p/i interface will be uncovered. Figure 3.8 shows 

an example of QE for a-(Si,Ge):H device. 
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.Figure 3.8 QE and biased QE for a-(Si,Ge):H device 
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3.2.5 Hole mobility-iifetime product 

Hole lifetime-mobility product (nx) shows the transportation and recombination 

of the holes, which is very important because solar cell is a minority devices and in 

most regions holes are the minority carriers [32-33]. The fill factor is primarily 

determined by nr. In order to determined the value of HT, we need to know the internal 

electric field and quantum efficiency because we have equations: 

QE can be obtained by measurement, but we can not get the electric field directly. The 

electric field can be solved by using Poisson's equation if the charge distribution is 

known. One simple method is to assume constant electric field, which is determined by 

E = —, d is the thickness of the i-layer, V is the voltage drop in the i-layer. But this 
d 

assumption is not good because the actual E-field in i-layer is not constant. By using the 

AMPS program, the simulation results show that the E-field is high at the p-i and i-n 

interfaces and drops down quickly in the middle. Dalai and Haroon calculated the E-

field by simply assuming that the charge density drops down exponentially from the 

two interfaces to the middle and the charge distribution is symmetric. 

(3.16) 
dx e 

(3.14) 

where 

L, =nzE{y). (3.15) 

where 
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p ( x )  =  q  •  N o e " " ,  (3.17) 

E(x) = ̂ ^-e''' +E,, 
€ - a  

(3.18) 

Eo = V -V f c'"dx ^ buUt-ii ^applied J e UA. 
n S ' O 

l_ 

L 
(3.19) 

The typical E-field profile from this assumption is shown in Figure 3.9. 
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Figure 3.9 E-Filed in i-layer 

Assuming that [ix does not depend on the wavelength and applied voltage, then 

it can be determined by fitting the QE calculation from the above equations to the QE 

measured. QE is measured at three different wavelength as a function of bias. Figure 

3.10 shows that with \n=le-9, the three QE curves fit very well. 
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Figure 3.10 Fitting of QE curves 

3.2.6 Midgap defect density 

Much information on the quality and properties of a material can be obtained 

from its distribution of localized states, as mentioned before. There are many methods 

[29-31] to get the DOS such as capacitance-voltage (C-V), capacitance-temperature (C-

T), field effects (FE), deep-level transient spectroscopy (DLTS) and space-charge-

limited current (SCLC). The results obtained from FE are usually higher than from 

other methods because the FE measurement is affected by the states in the surface 

region. The DLTS results represent the true volume density of states, but the 

instrumentation and analysis is rather complex compared to other methods and several 
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key assumptions used to extract the DOS from DLTS spectra can't be verified and have 

been called into question by other workers. 

Next, we will discuss the space charge limited current method. An n-i-n 

siructure suggested by Den Boer [31] for SCLC measurements will be used. This 

measurement, which has not been used before in our group, gives a value for the defect 

density near the Fermi level and is correct within a factor of two. In the n-i-n 

configuration, the I-V characteristic is not obscured by exponential behavior for low 

voltage, as in the case of Schottky diodes. This method is thickness indep)endent, but 

normally needs about Ifim for the i-layer for accuracy. A typical J-V curve measured 

from n-i-n devices is shown in Figure 3.11. 
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Figure 3.11 J-V curve of the n-i-n device 
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N (E) can be deduced from the above J-V curve using the following deductions. 

Assume the electric field is constant and equal to V/L, then: 

(3.20) 

where 

/ z ,  = ^ ^ e x p ( - ^ ^ ~ ^ ) ,  ( 3 . 2 1 )  
kT 

V, 
7, (3.22) 

where 

n . =  e x p ( — ^ ^ ~ ^ ) ,  ( 3 . 2 3 )  
kT 

where L is the thickness of i-layer. From the above equations, we can get: 

^Ef = E,. -E,,= kTLni^). (3.24) 
J 1^1 

When the electrons is injected into i layer, Fermi level rises from EFj to EF2 and the 

number of filled trap changes. Assuming the defect density distribution N,(E) is 

continuous and slowly varying, the injected charge number can be expressed by: 

£ f i  

N , A E )  -  ( E )  =  j N ,  ( E ) d E  =  N ,  ( E )  •  A E ,  , (3.25) 
E f i  

Because of the assumption of constant electric field, the injected charge Q per unit area 

can also be expressed as: 
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(3.26) 

Then we can get the defect density from the equation: 

Q  =  ̂  =  q L N , ( ^ E ) ^ E ,  (3.27) 

So: 

(3.28) 

the position of the defect density is determined by: 

(3.29) 

In this measurement, the applied electric field should be smaller than 5E4 V/m because 

the field ionization also contributes to the free charge density at high electric field. 

3.3 FTIR measurements 

Fourier transformed infrared absorptance spectroscopy (FTIR) is the 

measurement of the wavelength and intensity of the absorption of infrared light by a 

sample. Mid-infrared light (2.5 - 25 fim, 4000 - 400 cm ') is energetic enough to excite 

molecular vibrations to higher energy levels. The wavelength of an IR absorption band 

is characteristic of specific types of chemical bonds, so it's a very useful method to 

analyze the bonding status of silicon-hydrogen or germanium-hydrogen in our samples. 

The relevant peaks and their positions are shown in Table 3.1. 
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Table 3.1. The characteristic peaks of Si and Ge hydrogen bond 

Si hydrogen bond Wave number (cm'^) Ge hydrogen bond Wave number (cm"") 

Si-H stretching 2000 Ge-H stretching 1880 

Si-H bending 630 Ge-H bending 570 

Si-Ha stretching 2080-2090 Ge-Ha stretching 1980 

Si-Ha bending scissors 880 Ge-Ha bending scissors 830 

Si-Ha rocking 630 Ge-H2 rocking 570 
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1 Electro-optical characteristics of a-(Si,Ge):H nnade by ECR PECVD 

It was mentioned in Chapter 1 that there is an inverse linear relationship 

between the Ge content and optical bandgap of the a-(Si,Ge) material. It is not easy to 

get the Ge content in each sample because of the complexity of the measurement. But 

we can measure the optical bandgap easily by measuring the optical absorption. So we 

can use the optical bandgap to estimate the Ge content in the material. The only 

deviation from this linear relationship is because of the hydrogen concentration. 

When the GeH4/(GeH4+SiH4) gas flow ratio increases from 0% to 100%, that 

means that the Ge content goes from 0% to 100%, we got E^iuc decreases from 1.7eV to 

I.leV. In Table 4.1, the deposition parameters for some samples with different 

GeH4/(GeH4+SiH4) ratio are shown. The results are shown in Table 4.2. 

Table 4.1: Deposition parameters for a-(Si,Ge):H devices 

Tenfiperature Pressure Power H2(%) SiH4(%) GeH4(%) TMB(%) 
2//3435 360°C 5 mTorr 100 W 60 15 30 15 
2//3437 360°C 5 mTorr 100 W 60 15 40 15 
2//3436 360°C 5 mTorr 100 W 60 15 45 15 
2//3438 360°C 5 mTorr 100 W 60 15 50 15 
2//3454 360°C 10 mTorr 130 W 60 15 20 15 
2//3455 360°C 10 mTorr 130 W 60 15 30 15 
2//3457 360°C 10 mTorr 130 W 60 15 40 15 
2//3928 300°C 5 mTorr 150 W 60 15 40 10 
2//3929 300°C 5 mTorr 150 W 60 15 60 10 
2//3936 300°C 5 mTorr 150 W 60 15 80 10 
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With the addition of Ge into the material, the characteristics of the alloy change. 

We found that bandgap is the most significant factor to change Vqc according to the 

k T f  
equation = — 

q 

E 
H — F i g u r e  4 . 1  s h o w s  t h e  r e l a t i o n s h i p  

between Etauc and Vqc for all the samples (including some samples that are not shown in 

Table 4.1), the trendline shows that VocHA+0.66Eg, which is close to the estimation of 

the equation. 

The deviation of Voc from the line results from other factors such as thickness, 

hydrogen content, deposition parameters etc. When the sample is very thin, the Voc is 

hisher. 

Voc-Eg 

y=QeB15(-Q4105 

12 1.4 1.6 1.8 

Figure 4.1 Open circuit voltage vs. bandgap 
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Table 4.2: Results for a-(Si,Ge):H devices 

Voc(V) Isc(nriA) FF Eu,(meV) E«uc(eV) 
2//3435 0.68 0.305 52.30% 47.6 1.61 
2//3437 0.66 0.32 52.50% 48.4 1.59 
2//3436 0.63 0.52 47.80% 48.8 1.59 
2//3438 0.65 0.69 46.60% 47.6 1.56 
2//3454 0.79 0.55 56.60% 47.4 1.65 
2//3455 0.71 0.47 59.80% 48.6 1.62 
2//3457 0.66 0.355 49.80% 49.6 1.58 
2//3928 0.71 0.57 57.40% 45.5 1.60 
2//3929 0.60 0.71 58.60% 46.0 1.55 
2//3936 0.52 0.76 54.00% 44.6 1.46 

From Tabic 4.2, we see that Isc increases when Euuc is decreasing. It's because 

a=B*(hv-Eg)"/hv, so the absorption of materials increase a lot because of the lower 

bandgap, that makes QE increase too and then Jl increases. 

The fill factor decreases with decreasing Eg. The bond energy of Ge-H is 2.99 

eV, Si-H is 3.35 eV. So it is easier to break the Ge-H bond that the Si-H bond. And 

because the mass the Ge atom is larger than those of Si atoms, so the mobility of gas 

phase GeHx is smaller than that of SiH*. Both these two reasons will contribute to an 

increasing growth rate when the GeHt content increases. So with less reaction time and 

more Ge included, the material is grown inhomogeneously. There are more defects, so 

the FF decreases. 

Although Voc and FF decreases, the power conversion efficiency is still 

improved because of higher Isc. This breaks the limit that a-(Si,Ge);H devices can only 

be applied as the bottom cell in a tandem solar cell. 

Eur increases, which is consistent with FF. The hole mobility lifetime product 

decreases, which is consistent with FF. 
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Figure4.2 is QE curves with different bandgaps. When the Ge content increases, 

quantum efficiency QE at long wavelength increases and the peak of QE move to longer 

wavelength. It's consistent with the decrease of Eg. When Eg is small, the longer 

wavelengths of the solar spectrum are used. 
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Figure 4.2 Two QE curves with different bandgap 

4.2 The effect of ion bombardment on a-(Si,Ge):H devices 

Ion bombardment includes both the ion flux density and the bombardment 

energy of the incident ions. Ion bombardment may (1) provide mobility to radicals on 

the surface by collision momentum transfer. (2) break up polymeric chains and 

increases the percentage of monohydride bonds. So ion bombardment plays an 

important role in the growth of the material. 
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The ion bombardment can be controlled by (1) deposition parameters such as 

pressure, power etc. (2) inert gas dilution such as He, Ar, Xe etc (3) substrate bias. In 

this report, the effects of pressure. He dilution and substrate bias will be discussed in 

detail. 

4.2.1 Pressure 

It has been shown in Haroon's thesis [27] that low pressure will lead to better 

quality of the material because of higher ion bombardment. S. Haroon and V. Dalai [36-

38] showed that the a-(Si,Ge):H films and devices grown at low pressure under 

hydrogen plasma had better quality. Optical and electronic properties , including 

bandgap, Urbach energy and moblity-lifetime for both electrons and holes were found 

to be greatly improved at low pressure. They belieVed that the increase in ion 

bombardment was responsible for these effects. 

In this report, the conclusion is further verified by SCLC data. Figure 4.3 and 

Figure 4.4 show the density of states of the films deposited at 10 mTorr and 5m Torr 

respectively for identical SiH4/GeH4 ratio, power and temperature. 

From the two figures, the resulting density of states for samples at 10 mTorr is 

about lO'^cm'^eV', while the density of states for samples at 5 mTorr is about 2* lO'^ 

cm^eV"'. We can see that the defect density of states of the samples deposited under 

low pressure is much smaller than the one under high pressure, so the defect density of 

states can be reduced by the higher ion bombardment. 
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The density of states data found by other researchers are also presented here as a 

comparison with ours. Den Boers found that the midgap defect density of states for a-

Si:H is about l*IO'^ cm'^eV"'- 4*I0"^ cm'^eV', S.Hegedus and E. Fagen found a 

density of state of 1.3* lO'^ cm'^eV' and 3.6*10'^ cm'^eV' for a-(Si,Ge):H films at 

Eg=i.53eV and Eg=1.3eV respectively, which are both in the order of lO'^ cm'^eV"'. 

This value is much higher than the one we got at low pressure, which shows that the ion 

bombardment did improve the quality of the material. 

4.2.2 He plasma 

Some films are deposited under helium dilution. The deposition parameters are 

the exactly the same except the pressure (as shown in Table 4.3). The results are shown 

in Table 4.4. 

Table 4.3: Deposition parameters for a-(Si,Ge):H films 

Temperature Pressure Power He(%) SiH4(%) GeH4(%) 
2//3167 375°C 15 mTorr 123 W 100 20 40 
2//3264 375°C 25 mTorr 123 W 100 20 40 
2//3166 375°C 35 mTorr 123 W 100 20 40 

Table 4.4: Results for low bandgap a-(Si,Ge):H and a-(Ge):H films 

Growth Rate EUIUC(eV) EoaCeV) EUR(meV) CTL(s/cm) CTo(s/cm) OL/Oo 
2//3167 2.26A/S 1.58 1.75 48 1.09e-5 6.17e-10 1.77e04 
2//3264 1.97A/S 1.5 1.655 49 1.15e-5 2.49e-9 4.62e03 
2//3166 1.40A/S 1.35 1.56 62 2.44e-7 1.65e-9 1.48e02 
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From the results, we find that unlike the case for hydrogen plasma, the film 

properties for He-ECR films did not degrade as the pressure changed from lOmTorr to 

about 25 mTorr. However, the film properties degrade at higher pressure (35mTorr). 

The reason is that the ion energy of a He plasma is higher than that of a H 

plasma, which is also shown in Figure 4.5. He is much more energetic than H and He is 

heavier than H. The momentum transfer is more effective, so the effect of pressure on 

ion bombardment is weak except at the highest pressures. 
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Figure 4.5 Ion potential vs. Pressure 

From the samples grown under a He plasma, another interesting thing is that the 

bandgap of the a-(Si,Ge):H alloy increases as pressure decreases, which is unlike the 

situation of a-(Si):H. When there is germane existing in the environment, the strong 

momentum transfer caused by the He plasma increases the mobility of the radicals. 
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especially the heavier germyl. So the relative growth rate of Si to Ge changes, the 

concentration of Ge decreases and then the bandgap increases. This also shows that He 

does play a role in enhancing the ion bombardment by momentum transfer. 

4.2.3 Substrate bias 

4.2.3.1 Growth rate 

At first, we need to investigate the growth rate because devices with different 

thickness can not be compared. So we need to know it and then control the time of 

deposition to get the same thickness. The growth rates under different substrate biasing 

have been explored at different temperature and different SiH4/GeH4 gas flow ratio. 

The deposition parameters are shown in Table 4.5. These samples are deposited under 

different Ge content, different hydrogen dilution and different temperature. The results 

are shown in Figure 4.6-4.8. 

The growth rate is affected by two factors: the incident flux of active radicals 

and the surface mobility of radicals. The higher incident flux of radicals and the smaller 

mobility of the radicals will lead to higher growth rate. 

Table 4.5: Deposition parameters for a-(Si,Ge):H films 

Temperature Pressure Power H2(%) SiH4(%) GeH4(%) 
Group 1 300°G 15mTorr 123 W 100 15 40 
Group 2 200°G 15 mJorr 123 W 100 15 40 
Group 3 300°C 15 mJorr 123 W 60 15 40 
Group 4 300°C 15 mTorr 123 W 100 15 80 
Group 5 200°C 15 mTorr 123 W 100 15 80 
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The negative substrate voltage increases the ion potential, so it is easier to break 

the Si-H and Ge-H bonds. So the (1) incident ion flux increases, but at the same time (2) 

the mobility of radicals is also increasing because of high ion bombardment. For low Ge 

content, the first reason is predominant because the Si-H bond energy is higher and Si is 

not so heavy, so the growth rate increases with negative voltage (Figure 4.6 and 4.7). 

But for the high Ge content, because Ge-H bond energy is smaller compared to 

Si-H. so the first reason is not predominant now. And because Ge is much heavier than 

Si, so the second reason also contributes. The result of the compensation of the two 

reasons is that the growth rate remains nearly unchanged with increasing negative 

voltage (Figure 4.8). 
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Figure 4.6 Growth rate vs. Substrate biasing for low Ge content films 
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The effects of hydrogen dilution and temperature are also shown in Figure 4.6 

and 4.7. From Figure 4.6, when substrate bias increases, the growth rate for the low 

temperature also increases, but not as fast as the one at high temperature. It is because 

that at low temperature, the surface mobility is low and more ion bombardment is 

needed to increase the growth rate. Figure4.7 shows the growth rate vs. substrate bias 

under different hydrogen dilution. The growth rate keeps increasing with negative 

substrate bias. The effect of the substrate bias at low hydrogen dilution is not as strong 

as that at high hydrogen dilution. It is because that hydrogen homogenizes the surface 

and etches the surfaces (exothermic reaction), so ion bombardment becomes more 

effective at the high hydrogen dilution. 

4.2.3.2 The effect of substrate bias on a-(Si,Ge):H device 

Some reports have studied the effects of dc bias on properties of amorphous 

silicon films and their alloys [24-26]. The effects of ion bombardment are determined 

by both the ion flux density and the bombardment energy of the incident ions. In the 

ECR PECVD process, by using negative DC bias method, both the ion bombardment 

energy and the ion flux are increased (Mathew DeFreese's thesis[42]). The ion energy is 

defined by (Vj-Vdc), where Vs is the plasma space potential. 

Some samples have been grown under different substrate biasing. Deposition 

parameters are shown in Table 4.6. Thickness, I-V curve, Tauc gap, Urbach energy and 

Quantum efficiency are measured as mentioned before. The results are shown in Figure 

4.9.-4.13. 
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From Figure 4.9-4.13, it is shown that Euuc increases, Vqc increases, FF increases 

and |J,T decreases with the increasing negative biasing. The substrate voltage makes Ge 

grow more homogeneously because of the greater ion bombardment, while the Ge-Ge 

cluster will lead to an apparently lower bandgap. So the more homogeneous film will 

also lead to higher bandgap. Vqc is increasing when a negative voltage is applied, which 

is consistent with E^uc data. 

Table 4.6: Deposition parameters for a-(Si,Ge):H films 

Temperature Pressure Power H2(%) SiH4(%) GeH4(%) TMB(%) 
Group 1 360=0 15 mTorr 123 W 100 15 30 20 
Group 2 360°C 15 mTorr 123 W 100 15 40 20 
Group 3 300°C 15 mTorr 123 W 60 15 40 20 
Group 4 360°C 15 mTorr 150 W 60 15 30 20 
Group 5 300°C 10 mTorr 123 W 60 15 40 20 

Fill factor is also higher for negative biasing. There are two possible reasons to 

explain this situation. The first is, as we mentioned before, Ge-Ge clusters are broken, 

the film grows more homogeneously. The second is that the greater ion bombardment 

suppresses dyhidride bonds. Both make the defect density decrease, so the hole 

diffusion length increases, so FF increases. These data are consistent with the data on 

Eur and ^iT product of holes shown in Figure 4.12 and 4.13. 
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The Urbach energy decreases when substrate voltage is increasing, which is a 

signature of decreasing disorder. It shows that the defect density decreases, which 

means the film is grown more homogeneously when substrate voltage is applied. HT 

data is increasing with negative dc bias, which is consistent with less disorder. 

Figure 4.14 shows the I-V curves for two samples with and without substrate 

bias. We can see that the Vqc, Isc and fill factors are much improved by applying the 

substrate bias. The fill factor even increases by more than 20%. 

In conclusion, under certain deposition environments, the quality of devices is 

improved when negative substrate voltage is applied. But when the pressure is low and 

the power is high, the ion bombardment is already strong enough and then the effect of 

substrate bias is weak. For example, the substrate voltage did not show any 

improvement on device quality for Group 4 and Group 5. 

4.3 Low bandgap a-(Si,Ge):H and a-(Ge):H devices 

It's generally believed that the quality of the material and device degrades 

significantly as the Ge content increases, with alloys having >50% Ge content being 

rather poor in quality. High quality p-i-n devices have been made and studied for Ge 

content <50% in most of the research [5-9]. However, only a few investigations [7][23] 

have been done for films of Ge content >50%, and fewer still on devices. In this report, 

we explored the properties of a-(Si,Ge):H alloys with Ge content <50% for both films 

and devices under the combination of high temperature, high hydrogen dilution and ion 

bombardment. 
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4.3.1 Films 

First, some films are deposited on Coming 7059 glass. The growth precursors 

are si lane and germane or germane alone. The films are grown with a high hydrogen 

dilution (>20:1) and low pressure (<10mT) with high temperature (>.300°C) The 

deposition parameters are shown in Table 4.7, including samples with different 

SiH4/GeH4 ratios, different hydrogen dilutions and different temperatures. When the 

target pressure is 5 mTorr, the real pressure of these samples is between SmTorr and 6 

mTorr because of the limitation of the system. 

The electrical and optical properties are investigated by the Tauc gap, Urbach 

energy and photo/dark conductivity measurements, which are shown in Table 4.8. 

Table 4.7: Deposition parameters for low bandgap a-(Si,Ge):H and a-(Ge):H films 

Temperature Pressure Power H2(%) SiH4(%) GeH4(%) TMB(%) 
2/4396 350°C 5 mTorr 150 W 60 5 100 20 
2/4394 350°C 5 mTorr 150 W 60 6 90 20 
2/4400 350°C 5 mTorr 150 W 60 8 80 20 
2/4393 350°C 5 mTorr 150 W 60 10 90 20 
2/4333 350°C 5 mTorr 150W 80 5 90 20 
2/4334 350°C 5 mTorr 150 W 80 6 60 20 
2/4405 SSCC 10 mTorr 150 W 60 0 60 20 
2/4406 300°C 10 mTorr 150 W 60 0 60 20 
2/4397 300°C 5 mTorr 150 W 60 0 100 20 

From the results, the Tauc gap variation is from 1.03 eV to 1.42 eV because of 

the different SiH4/GeH4 ratios. Figure 4.15 shows photo and dark conductivity vs. Tauc 

gap. Figure 4.16 shows photoconductivity /dark-conductivity ratio vs. Tauc gap. Figure 

4.17 shows Urbach energy vs. Tauc gap. 
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Table 4.8: Results for low bandgap a-(Si,Ge):H and a-(Ge):H films 

Etauc(®V) Eo4(eV) Eu,(meV) aL(S/cm) aD(S/cm) Oi/ao 
2/4396 1.25 1.41 41 3.72e-6 6.16e-8 6.04e01 
2/4394 1.31 1.44 50 6.87e-6 6.23e-8 1.10e02 
2/4400 1.32 1.47 42 5.68e-6 4.37e-8 1.30e02 
2/4393 1.34 1.46 47 1.00e-6 4.62e-g 2.17e02 
2/4333 1.33 1.43 55.7 4.42e-6 5.83e-8 7.57e01 
2/4334 1.42 1.55 46 6.35e-6 1.1e-8 5.77e02 
2/4405 1.08 1.21 48 6.29e-5 5.24e-5 1.20e00 
2/4406 1.03 1.23 41 2.89e-4 2.24e-4 1.29e00 
2/4397 1.06 1.21 48 4.49e-4 3.55e-4 1.26e00 
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Figure 4.15 Photo and dark conductivity vs. Tauc gap 

From Figure 4.15 and 4.16, we find that the photoconductivity decreases, dark 

conductivity decreases, but Oi/Oo increases with increasing Tauc gap. From Figure 

4.17, Eur doesn't change much with Tauc gap. The values of Eur are low for such a high 

Ge content. The typical Urbach energy curve with Etauc=l-25 eV is also shown in Figure 

4.18, which is about 40-42 meV. 
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Figure 4.18. The Urbach energy of 1.25 eV cell 

4.3.2 Devices 

Some devices are grown on stainless steel with similar deposition parameters to 

those films. The thickness of the i layer is about 0.15-0.2 fim and the growth rate is 

about I A/s. The TMB is graded from 0% to 40% from the n side to the p side. The 

deposition parameters are shown in Table 4.9. The results of these samples are shown in 

Table 4.10. 

When the Tauc gap varies from 1.16 eV for pure a-(Ge):H device to 1.34 eV for 

a-(Si,Ge):H device, the open circuit voltage increases from 0.34 V to 0.52 V. The fill 

factor varies from 51% to 61% except for the one deposited at low temperature. The 
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Urbach energy is between 40-50 meV. These values are very good for such a low 

bandgap device. 

Figure 4.19 and 4.20 show the I-V curve for Euuc=1.34 eV and Etauc=l-16 eV. 

The fill factors for the two cells are 61% and 51% respectively. Figure 4.21 and 4.22 

show the QE and QE ratio plot across the photon spectrum for the two samples 

separately. The low ratio is an indication of the good collection of both electrons and 

holes although not as good as the best a-(Si):H devices. Figure 4.23 and 4.24 show that 

the defect density of states of the two cell. The defect density for the 1.34 cell is about 

6el6 cm"''eV'' and that for the 1.16 cell is 2el cm'^eV"'. 

Table4.9; Deposition parameters for low bandgap a-(Si,Ge):H and a-(Ge):H devices 

Temperature Pressure Power H2(%) SiH4(%) GeH4(%) TMB(%) 
2/4307 350°C 5 mTorr 150 W 80 6 60 0-40 
2/4308 350°C 5 mTorr 150 W 80 6 70 0-40 
2/4322 350°C 5 mTorr 150 W 80 5 50 0-40 
2/4321 350''C 5 mTorr 150 W 80 5 70 0-40 
2/4324 350°C 5 mTorr 150W 80 5 90 0-40 
2/4310 350°C 5 mTorr 150 W 70 5 90 0-40 
2/4360 350°C 5 mTorr 150 W 80 0 60 0-40 
2/4327 300°C 5 mTorr 150 W 80 5 90 0-40 

Table 4.10: Results for low bandgap a-(Si,Ge):H and a-(Ge):H devices 

Voc(V) Isc(mA) FF E^(meV) Eauc(eV) 
2/4307 0.52 0.64 61.10% 45.0 1.34 
2/4308 0.52 0.58 58.80% 43.0 1.31 
2/4322 0.49 0.80 54.20% 42.0 1.32 
2/4321 0.49 0.74 59.60% 46.0 1.30 
2/4324 0.43 0.95 52.50% 45.6 1.24 
2/4310 0.44 0.50 58.00% 47.7 1.27 
2/4360 0.34 0.87 51.00% 40.0 1.16 
2/4327 0.51 0.65 43.80% 45.7 1.35 
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4.3.3 FTIR measurements 

To make FTIR measurements, some samples are deposited on the double side 

polished silicon wafer. Two are a-(Si,Ge):H samples deposited at different pressures 

while other parameters are almost the same. The third sample is pure a-(Ge):H. The 

deposition parameters are shown in Table 4.11. 

Table 4.11 Deposition parameters for a-(Si,Ge):H and a-(Ge):H films 

Temperature Pressure Power H2(%) SiH4(%) GeH4(%) TMB(%) 
2//4401 350°C 5.6 mTorr 150 W 60 6 90 20 
2//4402 350°C 10 mTorr 150 W 60 5 80 20 
2//4403 350°C 10 mTorr 150 W 60 0 60 20 

Figure 4.25 and 4.26 show the FTIR results of two samples made at different 

pressure. The spectrum has big fluctuations which is resulting from the difference of the 

reflective index of the Si wafer and the low bandgap a-(Si,Ge):H material. The 

characteristic peaks are located on this interference background, which limits the 

accurate measurement of the hydrogen content to only some qualitative analysis. The 

high pressure sample has peaks at 2150 cm"', 2020cm"', 1890 cm"', 618 cm"', 580 cm"'. 

They are (SiH2)n bond stretching mode, Si-H bond stretching mode, Ge-H bond 

stretching mode, Si-H bond bending mode and Ge-H bond bending mode respectively. 

The Si-H bond stretching mode shifted slightly from 2000 cm"' to 2020 cm"' because of 

the existence of the (SiH2)n bond. The low pressure sample also has corresponding 

peaks at 2007 cm"', 1890 cm"', 630 cm"', 580 cm '. There is another peak at 1110 cm"', 

which is the Si-O surface bond. Comparing the two spectra, we can find that the (SiH2)n 
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bond is not obvious in the spectrum of the low pressure sample. So the ion 

bombardment helps to break up the poly Si-Hi bond, which is consistent with the result 

obtained by S. Sugiyama and J.Yang [26]. 

Another important result is that the preference of Si-H to Ge-H was broken up 

by ion bombardment. h'llK results shows that the relative amplitude of the peaks for 

both the Ge-H bond stretching mode and bending mode to Si-H bond stretching mode 

and bending mode for the low pressure sample is much higher than those of the high 

pressure sample. From Chapter 1, we know that the preferential attachment of hydrogen 

to silicon rather than Germanium is the one of the major reasons that a-(Si,Ge):H alloys 

have more defect density and have poorer opto-electrical properties than a-Si:H. 

This result is also consistent with our previous assumption [27] that the higher 

ion bombardment at low pressure reduces Ge-Ge clusters and make the film grows 

more homogeneously. The increasing concentration of Ge-H bonds verified the 

decreasing Ge-Ge cluster density indirectly. 

The FTIR spectrum of the pure a-(Ge):H is shown in Figure 4.27, which has a 

Ge-H stretching bond at 1890 cm"' and bending bond at 580 cm"'. 

Si-H2 and GeH2 stretching bond and bending bond are not obvious except in the 

first spectra, which shows that the Si-H and Ge-H bonds are predominant in the material 

grown in the ECR PECVD system under optimal plasma conditions. 
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4.3.4 Further improvement of a-(Si,Ge):H and a-(Ge):H devices 

According the previous results we obtained, substrate bias and ppm boron 

doping are used to further improve the performance of the devices. 

4.3.4.1 Substrate bias 

Some a-(Si,Ge):H and a-(Ge):H samples are deposited under substrate bias 

from 0 V to -90 V. The deposition parameters are shown in Table 4.12-13 and results in 

Table 4.14-15. 

Table 4.12 Deposition parameters for a-(Si,Ge):H with varying substrate bias 

Vbias Temperat 
ure 

Pressure Power H2(%) SiH2(%) GeH4(%) TMB(%) 

2//4294 0 V 350°C 10 mTorr 150 W 100 7 100 0-48 
2//4295 -30 V 350°C 10 mTorr 150 W 100 7 100 0-48 
2//4296 -60 V 350°C 10 mTorr 150 W 100 7 100 0-48 
2//4297 -90 V 350°C 10 mTorr 150 W 100 7 100 0-48 

Table 4.13: Results for a-(Si,Ge):H with varying substrate bias 

Voc(V) Isc(mA) FF Eu,(meV) Etauc 
2//4362 0.46 0.51 50.80% 46.8 1.28 
2//4364 0.42 0.78 52% 44.4 1.28 
2//4360 0.44 0.67 56.80% 42 1.28 
2//4361 0.43 0.74 48.80% 40 1.28 

Table 4.14 Deposition parameters for a-(Ge):H with varying substrate bias 

Vbias Temperature Pressure Power H2(%) GeH4(%) TMB(%) 
2//4335 0 V 350°C 5 mTorr 150 W 80 60 0-25 
2//4337 -30 V 350°C 5 mTorr 150 W 80 60 0-25 
2//4338 -60 V 350°C 5 mTorr 150 W 80 60 0-25 
2//4339 -90 V 350°C 5 mTorr 150 W 80 60 0-25 
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Table 4.15: Results for a-(Ge):H with varying substrate bias 

Voc(V) l«(mA) FF E^(meV) Etauc 
2//4335 0.35 0.66 49% 44 1.14 
2//4337 0.34 0.64 52% 40 1.17 
2//4338 0.33 0.46 55% 38 1.18 
2//4339 0.34 0.7 47% 46 1.16 

Figure 4.28 shows the fill factor vs. substrate bias and Figure 4.29 shows the Eur 

vs. substrate bias. We can see that the two data are self-consistent and substrate bias can 

provide some ion bombardment to improve the quality of the materials when substrate 

bias > -60 V. But when the ion bombardment is too strong (substrate bias < -60 V), the 

quality of the films degrades. Another thing is that for a-(Ge):H devices, high ion 

bombardment still has effects even under low pressure. It is because of the fact that the 

mobility of the germyl is small. It's different from the alloy. 
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Figure 4.28 Urbach energy vs. substrate bias 
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Figure 4.29 Fill factor with different substrate bias 

4.3.4.2 Graded boron doping in i layer 

Some pure a-(Ge):H samples are deposited under different ppm boron doping. 

The ppm boron doping is graded increasingly from the n side to the p side. The 

deposition parameters are shown in Table 4.16. The results are shown in Table 4.17. 

The ppm boron doping can compensate the oxygen incorporated into the i layer 

from the environment. We can see that the addition of ppm boron doping improved the 

performance of the device, which is shown by the value of fill factor and Urbach 

energy. But when the boron doping reaches some value, the quality of the films 

degrades. 

, 

>a-(Ge);H 
la-(Si.Ge):H 
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Table 4.16 Deposition parameters fora-(Ge):H with varying boron doping in i layer 

Temperature Pressure Power H2(%) GeH4(%) TMB(%) 
2//4362 350°C 5 mTorr 150 W 80 60 0 
2//4364 350°C 5 mTorr 150 W 80 60 0-20 
2//4360 350°C 5 mTorr 150 W 80 60 0-40 
2//4361 350°C 5 mTorr 150 W 80 60 0-60 

Table 4.17: Results for a-(Ge):H with varying boron doping in i layer 

Voc(V) Isc(mA) FF Eur(meV) Equc 
2//4362 0.34 0.715 46% 45 1.15 
2//4364 0.36 0.78 49% 43 1.18 
2//4360 0.34 0.875 51% 40 1.16 
2//4361 0.35 0.84 45% 46 1.17 
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CHAPTER 5. CONCLUSION 

In this research, a-(Si,Ge):H and a-(Ge):H devices are grown by electron 

cyclotron resonance plasma enhanced CVD technique and the electrical and optical 

properties of these devices under different plasma conditions are investigated. 

The ion bombardment during growth can be enhanced by low pressure, inert gas 

and substrate bias. The conclusion that low pressure leads to better quality of the 

material under hydrogen plasma because of higher ion bombardment is further verified 

by the space charge limited current (SCLC) method. The midgap defect density of states 

for the low pressure sample is lower than the one deposited under high pressure. The 

resulting density of states for samples at 5 mTorr is only about 2*I0'Vcm''. Unlike the 

case for hydrogen plasma, the film properties for He-ECR films did not degrade as the 

pressure changed from lOmTorrto about 25 mTorr. however, the film properties 

degrade at higher pressure (35 mTorr). It's because the ion energy of He plasma is 

higher than that of H plasma. 

We also found that negative substrate bias can provide higher ion bombardment. 

The effects of substrate bias on the growth rate are different for the high Ge content 

sample and the low Ge content sample. At the low Ge content, growth rate increases 

with increasing of negative substrate bias. At high Ge content, growth rate keeps 

constant with the substrate bias. At low temperature and low hydrogen dilution, we 

found that more ion bombardment are needed to increase the growth rate. Under certain 
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deposition environments, the performance of the devices can be improved when 

negative substrate voltage is applied. But under some conditions such that the ion 

bombardment is already high, the effect is not so obvious. 

The quality of the material and device degrades significantly as the Ge content 

increases, with alloying having >50% Ge content being rather poor in quality. High 

quality p-i-n device have only been made for Ge contents <50%. In this work, we 

explored the properties of a-(Si,Ge):H alloys with Ge contents <50% and found that 

device quality material can be obtained under the combination of low pressure, high 

temperature, high hydrogen dilution and ppm boron doping in the i layer even for a 

bandgap as low as 1.16 eV. 

Fourier transformed infrared absorptance spectroscopy (FTIR) measurement 

showed that the density of the (SiH2)n bond was reduced by the ion bombardment at low 

pressure. Another important result by FTIR is that the preference of Si-H to Ge-H is 

broken up, low pressure and high hydrogen dilution is beneficial to increase the density 

of Ge-H bond. The increases of the density of the Ge-H bond leaded to less Ge dangling 

bond and Ge-Ge cluster so that the material is grown more homogeneously. 

The performance of the low bandgap a-(Ge):H and a-(Ge):H devices could be 

further improved by providing some graded boron doping in i layer and negative 

substrate bias. A fill factor of 55% and Urbach energy of about 40 meV were obtained 

for an a-(Ge):H solar cell. This is the first time ever that a good a-(Ge):H solar cell has 

been made. 



www.manaraa.com

71 

At last, more future work on ion bombardment, particularly momentum effects 

by using Ar +H2, needs to be done because that Ar can help in momentum transfer and 

H2 can help chemical reactions and surface homogenization. The combination of both 

may improve the quality of the device. And also more work on a-Ge:H because the 

material is still not as good as a-Si:H. 



www.manaraa.com

72 

REFERENCES 

1. W. Luft and Y. Tsuo, Hydrogenated Amorphous Silicon Alloy Deposition 

Processes, Marcel Dekker, Inc., New York, 1993 

2. J. Ho, Y. Fang, K. Wu and S. Tsai, "High-gain p-I-n infrared photosensors with 

Bragg reflectors on amorphous silicon-germanium alloy". Applied Physics Letter, 

70(7), 1997, pp. 826-828 

3. G. Bruno, P. Capezzuto and A. Madan, Plasma Deposition of Amorphous Silicon -

Based Materials, Academic Press, Boston, 1995 

4. A. L. Fahrenbruch and R. H. Bude, Fundamentals of solar cells. Academic Press, 

New York, 1983 

5. M. Stutzmann, "Structural, optical, and spin properties of hydrogenated amorphous 

silicon-germanium alloys". Journal of Applied Physics, 66(2), 1989, pp. 569-592. 

6. C. Graeff and I. Chambouleyron, "Structural and optoelectronic properties of Ge-

rich hydrogenated amorphous silicon-germanium alloys". Journal of Applied 

Physics, 76(4), 1994, pp. 2473-2475 

7. Mahan, L. Malhotra and S. Kashyap, "Electrical and optical properties of 

hydrogenated amorphous silicon germanium (a- Sii-xGe^iH) films prepared by 

reactive ion beam sputtering". Journal of Applied Physics, 66(6), 1989, pp. 2528-

2537 



www.manaraa.com

73 

8. Y. Chou, S. Lee, "Structural, optical, and electrical properties of hydrogenated 

amorphous silicon germanium alloys". Journal of Applied Physics, v83, nS, 1998, 

pp. 4111-4123 

9. V. L. Kuznetsov, M. Zaman, L. Vosteen B. Girwar and J. W. Metselaar, "Electrical 

and optical properties of plasma-deposited a-SiGe H alloys: Role of growth 

temperature and postgrowth anneal". Journal of Applied Physics, v80, nil, 1996, 

pp. 6496-6503 

10. C. Graeff and M. Stutzmann, " Electrical detected magnetic resonance in a-Si:H/ a -

Ge;H multilayers". Journal of Applied Physics, v79, nl2, 1996, pp. 9166-9171 

11. N. Saito, T. Yamaguchi and I. Nakaaki, " comparative study of properties between 

a-GeC:H and a-SiC:H films prepared by radio-frequency reactive sputtering in 

methane". Journal of Applied Physics, v78, n6, 1995, pp. 3949-3954 

12. J.Yang, A.Banerjee, S.Guha, 'Triple-junction amorphous silicon alloy solar cell 

with 14.6% initial and 13.0% stable conversion efficiencies", Appl. Phys. Lett., v70, 

n22, 1997, pp. 2975-2977 

13. S. K. O'Leary, "Optical absorption, disorder, and the disorderless limit in 

amorphous semiconductors". Applied physics letter, v72, nil, 1998, pp. 1332-1334 

14. S. Aljishi, J. Cohen S. Jin and L. Ley, " Band tails and thermal disorder in doped 

and undoped hydrogenated amorphous silicon and silicon -germanium alloys", 

Materials Research Society Symposium proceedings, vl92, pp. 27-37, 1990 

15. T. J. Mcmahon, "Defect equilibration in device quality a-Si:H and its relation to 

light-induced defects", Proc.Amer.Inst. of Phys., v234, 1991, pp. 83-90 



www.manaraa.com

74 

16. A. Middya, A. Ray, S. Jones and D. Williamson, "Improvement of microstructure of 

amorphous silicon-germanium alloys by hydrogenated dilution". Journal of Applied 

Physics, 78, 1995, pp. 4966-4974 

17. J. Lai, C. Liu , L. Chen and J. Cheng, " Formation of amorphous interlayer by solid-

state diffusion in TI thin films on epitaxial Si-Ge layers on silicon and germanium". 

Journal of Applied Physics, 78(11), 1995, pp. 6539-6542 

18. P. Donvan and P. Mangin, " Interpretation of transmission electron microscope 

images of amorphous silicon/germanium and silicon /iron multilayers". Journal of 

Applied Physics, 69(3), 1991, pp.I37I-I376 

19.1. Kato, T. Yoneda, T. Matsushita, "Influence of ion bombardment on a-Si;H films 

fabricated by plasma chemical vapor deposition", Electronics & Communications in 

Japan, Part 11: Electronics (English translation of Denshi Tsushin Gakkai 

Ronbunshi), v78, n2, Feb 1995 pp. 70-78 

20. K. Kato and I. Kato, "Deposition of hydrogenated amorphous silicon films using a 

microwave plasma chemical vapor deposition method with DC bias", Japanese 

Journal of Applied Physics, Part 1: Regular Papers & Short Notes, v30, n6, Jun 

1991 pp. 1245-1247 

21. x .  Xu, J. Yang, S. Guha, "Effect of ion bombardment during deposition of 

amorphous silicon and silicon-germanium alloy solar cell". Journal of Non-

Crystalline Solids Proceedings of the 1995 I6th International Conference on 

Amorphous Semiconductors - Science and Technology. Part 2, Sep 4-8 1995, vl98-

200, npt2. May 2, 1996, Kobe, Jpn, pp. I1I3-1116 



www.manaraa.com

75 

22. S. Guha, X. Xu, J. Jiang and A. Baneijee, "Microwave glow discharge deposition of 

amorphous silicon based alloys at high deposition rates for solar cell application". 

Mat. Res. Soc. Symp. Proc., 377,1995, pp. 621-626 

23. P. Wickboldt, D. Pang, W. Paul, "Improved a-Sii-xGejiH of large x deposited by 

PECVD", Journal of Non-crystalline Solids, 198-200, 1996 pp. 567-571 

24. T. Sasaki, Y. Ichikawa, "Effect of ion bombardment during plasma CVD on the film 

properties of a-Si:H studied by lEC plasma CVD", Journal of Non-Crystalline 

Solids Proceedings of the 1995 16th International Conference on Amorphous 

Semiconductors - Science and Technology. Part 2 (of 2) Sep 4-8, 1995, v 198-200, 

npt2 May 2, 1996 Kobe, Jpn, pp. 1007-1011 

25. J. Dutta, K. Hasezaki, A. Mashima, "Effect of ion bombardment on the properties of 

hydrogenated amorphous silicon prepared from undiluted and Xenon-diluted 

silane", Japanese Journal of Applied Physics, Part 2: Letters, v31, n3B, Mar 15 

1992 pp. L299-L302 

26. S. Sugiyama, X. Xu, J. Jiang and S. Guha, "Light-induced degradation of 

amorphous silicon-germanium alloy solar cells deposited at high rates". Mat. Res. 

Soc. Symp. Proc., 420,1996, pp. 197-202 

27. S. Haroon, Effect of Deposition Condition on Properties of a-(Si,Ge):H Films and 

Devices Using ECR-plasma Deposition, MS thesis, Iowa State University, 1998 

28. S. Kaushal, Stability and Electronic Properties of Amorphous Silicon p-I-n Devices 

Fabricated Using ECR Plasma Enhanced Chemical Deposition, Ph.D. thesis, Iowa 

State University, 1997 



www.manaraa.com

76 

29. K. Mackenzie, P. LeComber and W. Spear, 'The density of states in amorphous 

silicon determined by space-charge-limited current measurement". Philosophical 

Magazine B, 46, 1982, pp. 377-380 

30. J. David Cohen, "Density of states from junction measurements in hydrogenated 

amorphous silicon", 21(C), Semiconductors and semimetals, 1984 

31. W. denBoer, "Determination of midgap density of states in a-Si:H using space-

charge-limited current measurements". Journal de Physique, 42,1981, pp. 451-454 

32. D. Shen, J. P. Conde, V. Chu S. Wanger, " Carrier lifetime in amorphous 

semiconductors". Journal of Applied Physics,75(l 1), 1994, pp. 7349-7355 

33. C. Palsule, U. Paschen and S. Guha, "Evidence for hole traps at the amorphous 

silicon/amorphous silicon-germanium heterostructure interface". Applied physics 

letter, 70(4), 1997, pp. 499-501 

34. G. Baldwin, Design and modeling of a graded bandgap amorphous silicon solar cell 

deposited by plasma enhanced chemical vapor deposition, Ph.D. thesis, Iowa State 

University, 1994 

35. V. Dalai, G. Baldwin and K. Han, " Deposition of High quality a-(Si, Ge):H films 

and novel grades gap devices using triode glow discharge deposition". Proceedings 

of 23"^ IEEE PVSC, pp. 1037-1047, 1993 

36. V. L. Dalai, S. Haroon, Z. Zhou, T. Maxson and K. Han , "Influence of plasma 

chemistry on the properties of a-(Si,Ge):H alloys", Journal of Non-Crystalline 

Solids, 266-269 (1-3) ,2000, pp. 675-679 



www.manaraa.com

77 

37. V. L. Dalai, T. Maxson, S. Haroon, "Influence of plasma chemistry on the 

properties of amorphous (Si,Ge) alloy devices". Materials research society 

symposium - proceedings amorphous and microcrystalline silicon technology-1998 

Proceedings of the 1998 MRS spring meeting, Apr 14-17 1998, v507, 1999, San 

Francisco, CA, pp. 441-446 

38. V. L. Dalai, T. Maxson, K. Han, "Properties of a-Si:H and a-(Si,Ge):H solar cells 

prepared using ECR deposition techniques",; Conference record of the IEEE 

photovoltaic specialists conference proceedings of the 1997 IEEE 26th photovoltaic 

specialists conference, Sep 29-Oct 3 1997, Anaheim, CA, pp. 695-698 

39. V. L. Dalai, R. Knox, B. Moradi, "Measurement of Urbach edge and midgap states 

in amorphous silicon p-i-n devices". Solar energy materials and solar cells, 31 (3), 

1993, pp. 349-356 

40. G. Baldwin, V. Dalai, K. Han, "Deposition of high quality a-(Si,Ge) :H films and 

novel graded gap devices using rf triode glow discharge deposition", Conference 

record of the IEEE photovoltaic specialist conference proceedings of the 23rd IEEE 

photovoltaic specialist conference. May 10-14 1993, Louisville, KY, pp. 1037-1042 

41. V. L. Dalai, K. Han, "Research on a-(Si, Ge):H materials and devices", NREL 

subcontract XAK-8-17619-30, 1999. 

42. Matthew DeFreese, Parameter measurements of a germane Electron Cyclotron 

Resonance plasma, MS thesis, Iowa State University, 2000 



www.manaraa.com

78 

ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my sincere gratitude to my major 

professor, Dr. Dalai for his invaluable guidance and encouragement throughout my 

research. Without his help, I can not finish my Ph.D. program successfully. Also I 

would like to thank Dr. Tuttle, Dr. Black and Dr.Shinar and Dr. Lynch for serving as 

my committee member and giving me some suggestions on writing my dissertation. 

I would like to thank Kay Han and Tim Maxon for their helping in sample 

preparation. Also thank Caustoosh Bezbaush and Yong Liu and other students in MRC 

for their help and friendship. 

I would like to take this chance to express my deepest affection to my parents 

for their support, patience and love throughout these years. 


	2000
	Low bandgap α-(Si,Ge):H and α-(Ge):H devices
	Zhiyang Zhou
	Recommended Citation


	 

